SARS-CoV-2 and COVID-19

Treatment: Tocilizumab

David H. Spach, MD
Professor of Medicine
Division of Infectious Diseases
University of Washington

Gretchen Snoeyenbos Newman, MD
Senior Fellow
Division of Infectious Diseases
University of Washington
Tocilizumab (Actemra)
Tocilizumab

- **Medication Class**: Interleukin-6 (IL-6) receptor blocker

- **FDA Approved for**:
 - Cytokine release syndrome
 - Rheumatoid arthritis and other rheumatologic conditions

- **Dose for Cytokine Release Syndrome**
 - Weight \geq 30 kg: 8 mg/kg IV x 1 dose (max 800 mg)
 - Weight \leq 30 kg: 12 mg/kg IV x 1 dose (max 800 mg)

- **Dose for COVID-19**
 - Range of doses used in studies

- **Adverse Effects**
 - Injection site reactions
 - Increases in ALT and/or AST levels
Rationale for Use of Tocilizumab Persons with COVID-19

• Elevated levels of inflammatory cytokines, including IL-6 have been associated with increased mortality from ARDS
• Patients with COVID-19 have elevated levels of IL-6 and other inflammatory markers consistent with cytokine storm
• Tocilizumab has been effective in treating the cytokine storm associated with CAR-T cell therapy

Source:
Tocilizumab: Recombinant Humanized Anti-IL6 Receptor Monoclonal Antibody

Mouse Monoclonal Antibody

Mouse variable region
Mouse constant region

Humanized Monoclonal Antibody

Human heavy chain
Human light chain
Complementary Determining Region

Illustration: David H. Spach, MD
Tocilizumab (Actemra)

Humanized Murine Monoclonal Antibody IgG1 Subclass

Binds to:
- Soluble IL-6 receptor
- Membrane bound IL-6 receptor

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Classic IL-6 Pathway

Host Cell

Membrane IL-6 Receptor

gp130

Recruitment of gp130

Signal Transduction

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor:
Classic IL-6 Pathway – Image Series (1 of 3)
IL-6 Signaling via Membrane IL-6 Receptor: Classic IL-6 Pathway – Image Series (2 of 3)

Host Cell

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Classic IL-6 Pathway – Image Series (3 of 3)

Host Cell

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Trans Signaling IL-6 Pathway

- IL-6 and Soluble IL-6 Receptor Complex
- Soluble IL-6 Receptor
- gp130

Signal Transduction

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Trans Signaling IL-6 Pathway – Image Series (1 of 4)

Host Cell

Soluble IL-6 Receptor

ADAM-10
ADAM-17

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Trans Signaling IL-6 Pathway – Image Series (2 of 4)

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Trans Signaling IL-6 Pathway – Image Series (3 of 4)

IL-6 and Soluble IL-6 Receptor Complex

IL-6

Soluble IL-6 Receptor

Host Cell

ADAM-10
ADAM-17

gp130

Illustration: David H. Spach, MD
IL-6 Signaling via Membrane IL-6 Receptor: Trans Signaling IL-6 Pathway – Image Series (4 of 4)

IL-6 and Soluble IL-6 Receptor Complex

Soluble IL-6 Receptor

ADAM-10, ADAM-17

Host Cell

gp130

Signal Transduction

Illustration: David H. Spach, MD
Tocilizumab Binds to Both Soluble and Membrane IL-6 Receptors

Host Cell

Tocilizumab

Soluble IL-6 Receptor

gp130

Membrane IL-6 Receptor

gp130

Illustration: David H. Spach, MD
Tocilizumab and Inhibition of IL-6 Signaling

Soluble IL-6 Receptor: Trans Signaling Pathway

Membrane Bound IL-6 Receptor: Classic Pathway

Host Cell

Signal Transduction
Tocilizumab Treatment of 15 Patients with COVID-19: A Single Center Experience (China)

Tocilizumab Treatment of 15 Patients with COVID-19: Study Design

<table>
<thead>
<tr>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background: Retrospective case series study of 15 patients with variable severity of COVID-19 disease who received one or more doses of tocilizumab, with or without methylprednisolone during January 27–March 5, 2020 in China</td>
</tr>
<tr>
<td>Setting: Wuhan, China</td>
</tr>
<tr>
<td>Inclusion Criteria for Patients</td>
</tr>
<tr>
<td>- Infected with SARS-CoV-2/COVID-19</td>
</tr>
<tr>
<td>- Received tocilizumab treatment</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>- 1 or more doses of intravenous tocilizumab: 80-600 mg per dose*</td>
</tr>
<tr>
<td>- Option to receive methylprednisolone^</td>
</tr>
</tbody>
</table>

*5 patients received >1 dose of tocilizumab (3 received 2 doses and 2 received 3 doses) |
^8 of 15 received methylprednisolone (range 4 to 7 days) of treatment |

Tocilizumab Treatment of 15 Patients with COVID-19: Patient Characteristics

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>Patients (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, range), years</td>
<td>73 (62 – 80)</td>
</tr>
<tr>
<td>Male, Female</td>
<td>12, 3</td>
</tr>
<tr>
<td>Clinical Status*</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>2</td>
</tr>
<tr>
<td>Severe</td>
<td>6</td>
</tr>
<tr>
<td>Critical</td>
<td>7</td>
</tr>
<tr>
<td>Comorbidities (HTN, CVD, DM)</td>
<td>10</td>
</tr>
<tr>
<td>Also received methylprednisolone</td>
<td>8</td>
</tr>
</tbody>
</table>

*Defined by guidance Diagnosis and Treatment of Pneumonia Infected by Novel Coronavirus issued by the National Health Commission of China

Tocilizumab Treatment of 15 Patients with COVID-19: Results

- 3 of 7 critically ill patients progressed to death despite therapy
- 2 patients experienced worsening of their illness
- CRP levels decreased in 14 of 15 patients
- IL-6 levels remained persistently elevated in 1 seriously ill and 4 critically ill patients, including the 3 who died
- IL-6 levels initially spiked after tocilizumab and then decreased in all patients experiencing clinical stabilization or improvement

Conclusions: “Tocilizumab appears to be an effective treatment option in COVID-19 patients with a risk of cytokine storms. And for these critically ill patients with elevated IL-6, repeated dose of the Tocilizumab is recommended.”
Tocilizumab Treatment of 21 Patients with Severe COVID-19 (China)

Tocilizumab Treatment of 21 Patients with Severe COVID-19: Design

<table>
<thead>
<tr>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background: Uncontrolled, observational study to evaluate the effectiveness of intravenous tocilizumab in patients with severe COVID-19 in Wuhan, China during February 5 – February 14, 2020.</td>
</tr>
<tr>
<td>Inclusion Criteria (n = 21)</td>
</tr>
<tr>
<td>- PCR-confirmed SARS-CoV-2 infection on throat swab</td>
</tr>
<tr>
<td>- Severe COVID-19 (any of following):</td>
</tr>
<tr>
<td>- RR ≥ 30/min or SpO₂ ≤93% on room air or PaO₂/FiO₂ ≤300 mm Hg</td>
</tr>
<tr>
<td>- Critical COVID-19 (any of following):</td>
</tr>
<tr>
<td>- Mechanical ventilation or shock or multiorgan failure plus ICU admit</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>- Tocilizumab: 400 mg intravenous infusion x 1 plus</td>
</tr>
<tr>
<td>- Standard of care at hospital: lopinavir, methylprednisolone, supportive care</td>
</tr>
</tbody>
</table>

Tocilizumab Treatment of 21 Patients with Severe COVID-19: Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline Characteristic*</th>
<th>Patients (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD (range)</td>
<td>56.8 ± 16.5 (25-88)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>18 (85.7)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>9 (42.9)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>5 (23.8)</td>
</tr>
<tr>
<td>Illness Severity</td>
<td></td>
</tr>
<tr>
<td>Severe, n (%)</td>
<td>17 (81)</td>
</tr>
<tr>
<td>Critical, n (%)</td>
<td>4 (19)</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Pretreatment IL-6, mean ± SD*</td>
<td>132.38 ± 278.54 pg/mL</td>
</tr>
</tbody>
</table>

Tocilizumab Treatment of 21 Patients with Severe COVID-19: Baseline Characteristics

<table>
<thead>
<tr>
<th>Laboratory Markers of Inflammation</th>
<th>Before</th>
<th>Day 1 after Tocilizumab</th>
<th>Day 5 after Tocilizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x 10^9/L)</td>
<td>6.30 ± 2.77</td>
<td>8.05 ± 4.39</td>
<td>5.25 ± 2.11</td>
</tr>
<tr>
<td>Lymphocyte percentage</td>
<td>15.52 ± 8.89</td>
<td>11.78 ± 11.36</td>
<td>22.62 ± 13.48</td>
</tr>
<tr>
<td>CRP</td>
<td>75.06 ± 66.80</td>
<td>38.13 ± 54.21</td>
<td>2.72 ± 3.60</td>
</tr>
<tr>
<td>Procalcitonin, ng/mL</td>
<td>0.33 ± 0.78</td>
<td>0.21 ± 0.35</td>
<td>0.12 ± 0.15</td>
</tr>
<tr>
<td>Interleukin-6, pg/mL</td>
<td>153.44 ± 296.63</td>
<td>129.18 ± 131.79</td>
<td>274.90 ± 414.08</td>
</tr>
</tbody>
</table>

Tocilizumab Treatment of 21 Patients with Severe COVID-19: Results

- Fever in all patients resolved on day 1 after tocilizumab infusion
- 21 of 21 (100%) experienced improvement in SpO2 and/or ventilator requirements
- 15 of 20 (75%) had lower O₂ intake <5 days after tocilizumab
- 21 of 21 (100%) discharged from hospital
- Mean hospitalization time 15.1 ± 5.8 days after tocilizumab

Conclusion: “Preliminary data show that tocilizumab, which improved the clinical outcome immediately in severe and critical COVID-19 patients, is an effective treatment to reduce mortality.”